skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkinson, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal tidal wetlands and estuaries play important roles in the global carbon budget by contributing to the net withdrawal of CO2from the atmosphere. We quantified the linkages between terrestrial and oceanic systems, marsh-to-bay carbon exchange, and the uptake of CO2from the atmosphere in the wetland-dominated Plum Island Sound (MA, USA) and Duplin River (GA, USA) estuaries. The C budgets revealed that autotrophic marshes [primary production:ecosystem respiration (P:R) ~1.3:1] are tightly coupled to heterotrophic aquatic systems (P:R ~0.6:1). Levels of marsh gross primary production are similar in these systems (865 ± 39 and 768 ± 74 gC m−2year−1in Plum Island and the Duplin, respectively) even though they are in different biogeographic provinces. In contrast to inputs from rivers and coastal oceans, tidal marshes are the dominant source of allochthonous matter that supports heterotrophy in aquatic systems. Dissolved inorganic carbon (DIC) exported from marshes to the coastal ocean was a major flux pathway in the Duplin River; however, there was no evidence of DIC export from Plum Island marshes and only minor export to the ocean. Burial was a sink for 53% of marsh net ecosystem production (NEP) on Plum Island, but only 19% of marsh NEP in the Duplin. Burial was the dominant blue carbon sequestration pathway at Plum Island, whereas in the Duplin, DIC and organic carbon export to the ocean were equally important. Regional- and continental-scale C budgets should better reflect wetland-dominated systems to more accurately characterize their contribution to global CO2sequestration. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. We review the functioning and sustainability of coastal marshes and mangroves. Urbanized humans have a 7,000-year-old enduring relationship to coastal wetlands. Wetlands include marshes, salt flats, and saline and freshwater forests. Coastal wetlands occur in all climate zones but are most abundant in deltas. Mangroves are tropical, whereas marshes occur from tropical to boreal areas. Quantification of coastal wetland areas has advanced in recent years but is still insufficiently accurate. Climate change and sea-level rise are predicted to lead to significant wetland losses and other impacts on coastal wetlands and the humans associated with them. Landward migration and coastal retreat are not expected to significantly reduce coastal wetland losses. Nitrogen watershed inputs are unlikely to alter coastal marsh stability because watershed loadings are mostly significantly lower than those in fertilization studies that show decreased belowground biomass and increased decomposition of soil organic matter. Blue carbon is not expected to significantly reduce climate impacts. The high values of ecosystem goods and services of wetlands are expected to be reduced by area losses. Humans have had strong impacts on coastal wetlands in the Holocene, and these impacts are expected to increase in the Anthropocene. 
    more » « less
  3. null (Ed.)
    Abstract Although the hypoxia formation in the Gulf of Mexico is predominantly driven by increased riverine nitrogen (N) export from the Mississippi-Atchafalaya River basin, it remains unclear how hydroclimate extremes affect downstream N loads. Using a process-based hydro-ecological model, we reveal that over 60% of the land area of the Basin has experienced increasing extreme precipitation since 2000, and this area yields over 80% of N leaching loss across the region. Despite occurring in ~9 days year −1 , extreme precipitation events contribute ~1/3 of annual precipitation, and ~1/3 of total N yield on average. Both USGS monitoring and our modeling estimates demonstrate an approximately 30% higher annual N load in the years with extreme river flow than the long-term median. Our model suggests that N load could be reduced by up to 16% merely by modifying fertilizer application timing but increasing contribution of extreme precipitation is shown to diminish this potential. 
    more » « less
  4. Abstract Human‐induced nitrogen–phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data‐model integration framework to evaluate N and P dynamics and the potential for long‐term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security. 
    more » « less